
JOURNAL OF COMPUTATIONAL PHYSICS 80, 453-471 (1989) 

Calculation of Clebsch-Gordan and Racah Coefficients 
Using Symbolic Manipulation Programs 

W. H. KLINK* AND TUONG TON-THAT 

Department of Mathematics, The University of Iowa, 
Iowa Ciry, Iowa 52242 

Received October 5, 1987; revised May 26, 1988 

A procedure for calculating Clebsch-Oordan and Racah coefficients arising from the 
decomposition of n-fold tensor products of the L’(N) groups using symbolic manipulation 
programs is given. Basis states are realized as polynomials in a space equipped with a differen- 
tiation inner product. The desired coefficients are then obtained by differentiating the relevant 
polynomials. Examples from su(2) and Su(3) are given. 0 1989 Academic PI~SS. Inc. 

1. INTRODUCTION 

The Clebsch-Gordan and Racah coefficients for X42) were computed in closed 
form many years ago [l]. Attempts have been made to compute these coefficients 
for other compact groups such as SU(N), but as N gets large, the complexity of 
these coefficients also grows rapidly. 

Clebsch-Gordan coefficients arise in the decomposition of n-fold tensor products 
of irreducible representations of a group into a direct sum of irreducible representa- 
tions [2]. Let Ix, X) be a basis state in an irreducible representation space of a 
compact group; here x labels the irreducible representation and X the basis in the 
representation space [3]. A basis for the n-fold tensor product can then be written 
as Ix~~~~>~~~Ix,,~~>. 

But if the tensor product space is decomposed into a direct sum of irreducible 
representations, basis elements of the form Ix, Y. q) will also span the space (Y is 
some (possibly new) basis label and 7 is a multiplicity label, distinguishing between 
equivalent representations in the n-fold tensor decomposition.) The Clebsch- 
Gordan coefficients are then defined as the overlap between these two basis sets, 
namely (x, Y,q( {[x1X1) Ix~X~)...(X~X,,)). For tensor products with n>2 there 
are many different ways in which one can choose the q label in Ix, Y, q). One 
possibility is to use a stepwise coupling scheme in which the l-2 representation 
spaces are first coupled together, then the third representation space is coupled to 
the l-2 tensor space and so on. Denote any stepwise scheme by a capital letter. 
Then the Racah coefficients are defined as the overlap between different stepwise 
coupling schemes, i.e., (x, Y, qA ( x, Y, q,). 
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Rather than finding a general closed form expression, we want to obtain these 
coefficients on a computer using a symbolic manipulation program. This will be 
done by realizing the irreducible representation spaces as polynomial spaces with a 
differentiation inner product. Orthogonal basis states Ix, X) are then polynomials 
in certain complex variables. If 11, Y, q) can also be realized as a polynomial, then 
coefficients such as Racah coefficients can be obtained by using the differentiation 
inner product to calculate (1, Y, qA 1 x, Y, qe). Since the polynomial realizations of 
states like Ix, Y, II) can be long and complicated, we want to define a procedure by 
which a computer can do the actual work needed to obtain the desired coefficients. 

In this paper we will focus attention on n-fold tensor products of U(N). Since 
U(N) and GL(iV, W) have the same irreducible representations, we will actually 
work for the most part with GL(N, 59). In previous papers we have shown how all 
of the irreducible representations of GL(N, W) can be realized as polynomial spaces 
with a differentiation inner product [4]. The spaces discussed in Section 3 are 
generalizations of the holomorphic Hilbert spaces introduced by Bargmann to 
decompose tensor products of SU(2) [S]. Our differentiation inner product is 
also related to the boson calculus, see Ref. Cl]. Though we work as much as 
possible in a basis-independent fashion, since Clebsch-Gordan coefficients are 
basis dependent, we make use of polynomial representations of GL(N, %) in a 
Gelfand-zetlin basis, as discussed in Ref. [6]. This material will be briefly reviewed 
in Section 2. 

In Ref. [7] we have shown how to obtain the states Ix, Y, a) for U(N) as poly- 
nomials. This material will be reviewed in Section 3. Finally, in Section 4 we show 
how to compute Clebsch-Gordan and Racah coefficients. Section 5 shows how to 
connect these results with the well-known coefficients for SU(2). Though 
Clebsch-Gordan coefficients for 2-fold tensor products and Racah coefficients for 
3-fold tensor products are known in closed form for SU(2), we will not confine our- 
selves to just these coefficients, but deal immediately with the n-fold case. The paper 
concludes with examples from W(2) and W(3) in Section 6. 

2. POLYNOMIAL REPRESENTATIONS OF U(N) 

Let B be a (Borel) maximal connected algebraically solvable subgroup of the 
general linear group GL(N, U). Then a theorem of Lie states that every linite- 
dimensional irreducible representation of B is one-dimensional. If we take as a 
concrete realization of B the lower triangular subgroup of GL(N, %), then an 
irreducible representation 7~: b --+ n(b), b E B, is of the form 

n(b)= b;;l ...byN, 

where (m) = (m,, . . . . m,) is an N-tuple of integers. If (m) is dominant, i.e., 
m, am,> ... mN > 0 then we set n E ncrn). Fix rccm) and let V’“’ denote the complex 
vector space of all polynomial functions f: gN y N + V which satisfy the covariant 
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condition f(bz) = rP)(b) f(z) (V(b, z) E B x VNx “) and let R’“’ denote the 
holomorphically induced representation of GL(iV, 9) on VCm) given by right transla- 
tion, i.e., (R’“‘(g) f)(z) = f(zg), g E GL(N, %?); according to the Borel-Weil theory 
R’“’ is irreducible and its highest weight is indexed by (m). Moreover, if we restrict 
this representation to U(N), it remains irreducible. Finally, if we equip V(“‘) with 
the “differentiation” inner product 

CL f’) =.w)f’(az=,? (2.1) 

wheref(D) denotes the differential operator obtained by replacing zii by the partial 
derivative a/az,, (1 6 i, j < N), then the representation of U(N) on V(“‘) is unitary 
(cf. [41). 

The U(N)-module V@) just given is basis independent. A convenient basis was 
constructed by Gelfand and zetlin (cf. [S]) in the following fashion: 

For any U(N)-module v’“‘, the restriction of I?‘“’ to U(N- 1) gives a reducible 
representation of U(N - 1 ), in which each irreducible representation of U(N- 1) 
occurs at most once. By applying this result to the chain of subgroups 
U(N)3 U(N- 1)X ..’ I U(l), we can label a state vector Ix, X) by the 
Gelfand-zetlin pattern with x = (m): 

x= ~~l ~~~1;:-~,~~m~Tk) 

mi = miN, 1 6 i < N. The polynomial corresponding to Ix, X) is given in Ref. [4]. 
Here it suffices to note that for the representation with signature (m, 0, . . . . 0), the 
polynomial realization of 

1 (m, 0, . . . . 0), 
> 

is given by 

for all zewNXN. 

3. ~-FOLD TENSOR PRODUCTS OF U(N) 

(2.2) 

We now want to consider n-fold tensor products of representations of U(N) with 
signatures of the form (Mi, 0, . . . . 0), 1 d i < n, where the Mj are positive integers. 
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The general case, where the entries after Mj are not all zero, is discussed in Ref. [9]. 
From Theorem 2.11 of [7] an n-fold tensor product space of representations with 

signatures (Mi, 0, . . . . 0), 16 i 6 n, can be given by 

fp’ E ff(MI.....M”’ = (f: %YxN -u(f(dz)=dy’ -d,M,f(z) 

f polynomial in z; (d, z) E D, x Vflx N}, (3.1) 

where D, is the diagonal subgroup of GL(n, U). Again, the group GL(N, 97) acts on 
H(“‘) by right translation. And if we equip HcM’ with the inner product given by 
Eq. (2.1), then again the representation of U(N) on H(““) is unitary. For example, 
a three-fold tensor product of U(4) would have a Gelfand-petlin tensor basis (given 
by Eq. (2.2)) of the form 

(m,, Xy’X$“X$“; ml, X~*‘X$*‘X~*‘; m3, X$3’X$3’Xt3’) 

=,r;, z$“zplzpYzyy 

We now make use of the observation that the left action of GL(n, w) defined by 

Cww-l(4=fw’4~ h E GL(n, %), (3.2) 

f a polynomial function in V x N, commutes with the right action of GL(N, U). 
Hence if we want to see how an element I(m), X) sits in HcM’, it suffices to find a 
map from V (m) to P’). Since in general isomorphic copies of P’) occur more than 
once in H(““), we should write I(m), X, q), where q labels the multiplicity. (In fact, 
according to Corollary 2.7 of [7], this multiplicity can be expressed in terms of the 
dimension of a specific weight subspace of Vcm’.) 

Now assume that the basis element I(m), X, 9) is given as a polynomial in I’(““. 
To find operators that map I(m), X) into H(““), we make use. of the fact that the 
Lie algebra of the left action L(h) defined by Eq. (3.2) has a basis given by 

L,= f zi/&3 1 6 i, j d n. 
I= 1 Jl 

(3.3) 

As shown in Ref. [7], repeated application of the L, operators will send I(m), X) 
into H(“‘). More specifically, since I(m), X) belong to I”“‘, we have the polynomial 
corresponding to I(m), X), P,(,,,),~>(z), satisfying 

P,(m).x)w) = d’;’ ‘..dmNNP,(m),X>(zh V(d, z) E D, x WNxN. 

The operators L, generate a universal enveloping algebra % and Ref. [7] shows 
that there always exist elements in a!, denoted by P,(L,), such that if P,(,,,),~,~> = 
p,(L,) P~(~),~), then 
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for all d E D, and all z E %“’ x N. Note that the label q indicates the multiplicity of 
different ways that P~(~),~, can be sent into linearly independent vectors in H’“‘. 

Assume now that a procedure has been given for obtaining polynomial states 
P,(~),~,~~. Then Clebsch-Gordan coefficients are given by 

and Racah coefficients by 

C(m), x T.4 I Cm), x VI,) = (P,(m),X,q.& P,(m),X,& (3.5) 

where in Eq. (3.4) and (3.5) ( .,. ) denotes the inner product defined by Eq. (2.1) and 
in Eq. (3.5), qa and qB are two multiplicity labels. 

We must now give a more definite procedure for obtaining P,~~,,~,~> from 
P,(~),~>. This is done in the next section. 

4. CONSTRUCTION OF THE 1 (WI), ik-, v] ) POLYNOMIALS 

Thus far in the discussion we have been rather vague about the multiplicity label 
q: The reason is that multiplicity can arise in different ways and the labels chosen 
are often dictated by the underlying physical problem. For example, in n-particle 
systems, in which the decomposition of n-fold tensor products of the same represen- 
tation with signature (M, 0, . . . . 0) is needed, one of the labels can come from the 
symmetric group acting on the same tensor product spaces. If the n systems are 
bosons, then only the symmetric representation is allowed. In this paper we will use 
the different coupling schemes possible in the n-fold tensor product to label 
the multiplicity which, as we shall show, is equivalent to using the eigenvalues 
of the Casimir operators of the left action L of various subgroups of GL(n, $9) 
on the linear space .P~“~(%?flxN) of all homogeneous polynomials of degree 
p41=M1+ ... +M,of%:““N as multiplicity labels. Note that 9’“l(Vx “) contains 
H(““) and is invariant under the left action of L of GL(n, %) (cf. Theorem 3, Sec- 
tion 56 of Ref. [lo]). The assertion that a multiplicity label can always be assigned 
without ambiguity rests on a theorem of H. Weyl (cf. [lo, Chap. XII, Section SO]) 
which can be stated as follows: 

If (m,, . . . . mN) is the signature of an irreducible representation of GL(N, U) and 
if (M, 0, . . . . 0) is the signature of another irreducible of GL(N, U), then the 
Clebsch-Gordan series of the tensor product of the two representations above is 
given by 

(~l,...,~N)O(MO, . . . . O)= 1 @I + ply ..*Y mN + PN) (4.1) 
OGP,il<S, Jo,+ +&g=M 

where si=mi-mi+,, 1 <i< N- 1. 
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The crucial point to observe here is that the Clebsch-Gordan series (4.1) is 
multiplicity free. Thus, if two isomorphic copies of an irreducible represen- 
tation of GL(N, V) occur in the decomposition of the tensor product 
V(Mi.o,-o)@ . . . @ V’“~~o~...~o) which is isomorphic to H(“l,--Mn), then by Eq. (4.1) 
they must originate from two inequivalent representations of GL(N, U) occurring in 
some intermediate step, say ( V(“l.o-o’ @ . . . @ I/(“~-l~o~ -O)) @ I/(“l,o. --*O), 2 < i < n, 

of this tensor product. Hence, one might use, for example, the coupling scheme 
( .-.(((I, 2), 3), 4)..., n) to label multiplicity, which, as we now show, is equivalent 
to using the Gelfand-Zetlin labels of the left action L of GL(n, W). 

First we use the theorem of H. Weyl given by Eq. (4.1) and infer that any 
irreducible representation with signature (m,, . . . . mN) occuring in the n-fold tensor 
product must come from irreducible representations that occur in the preceding 
chain. The signatures of this chain can be listed in the following matrix 

I: I 

m, , . . . . . . . , m, e nth stage 
ml,,-,, . . ..m.-.,.-,, 0 c (n - 1 )th stage 

rn,,; . . . . . . . . mii, o...o +- ith stage 

M,,O . . . . . . . . . . . . . . . 0 c 1st stage. 

By deleting the zeros we obtain a Gelfand-zetlin tableau 

i”:.;jj ). 

. . . . . m, 
n- I,n- I 

Weyl’s formula implies immediately that no two matrices above are identical, and 
hence the Gelfand tableaus are all distinct. In fact they correspond to the left action 
of the chain of subgroups GL(n, %x) 3 GL(n - 1, %?) 1 . . . 3 GL( 1, %?). Finally we 
use a theorem of Chevalley (see, e.g., Refs. [lo, ll)), which states that for every 
semisimple Lie algebra of rank r there exists a set of r Casimir operators whose 
eigenvalues characterize the finite-dimensional irreducible representations; these 
eigenvalues then label the distinct states of the (dual) left action and distinguish 
the same states equivalent under the right action. An analogous argument can be 
applied to any other coupling scheme, only the form of the matrices above is 
changed. A solution to the multiplicity problem is thus found if we ensure that all 
matrices occurring in a coupling scheme are distinct. 

So we have a solution to the Clebsch-Gordan problem. But more importantly, 
the freedom to use various coupling schemes will lead us to solutions of other 
interesting problems such as computing the Racah coefficients or constructing bases 
of irreducible representation spaces of GL(n, %?) with respect to different chains of 
its subgroup, not necessarily the chain GL(n, %?) 3 GL(n - 1, %) 1 ... 2 GL( 1, %). 
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We will deal with this basis construction in a forthcoming paper. For the moment 
let us remark that if qa denotes the Gelfand-Zetlin multiplicity label above and 
if qB is the multiplicity label coming from a different coupling, for example, the 
coupling scheme ( . . . ((n, n - 1 ), n - 2) . . . . l), then a Racah coefficient may be 
defined by Eq. (3.5). 

Now we can show how the polynomial P,(,,,),~,~> is computed. First consider 
p4I.O ,.... O)@ .. . @ p4,.0 . . . . . 0) as the exterior tensor product of n representation of 
GL(N, %?). The group action is given by 

ho ‘.. of,-&T,)flO ..’ ofQ,)fn, (4.2) 

where fi E y(“g-o,-,O), giE Gi (I< id n), and each Gi is a copy of GL(N, %). Then 
according to Corollary 2, Section 62 of [lo] (see also [ 11, Chap. lo]), the Casimir 
operators of each individual Gi generate the center of the action given in (4.2) and 
their eigenvalues uniquely determine the signature of this exterior tensor product 
(cf. Theorem 3, Section 61 of [lo]). If the action (4.2) is modified to 

OR(gi+I)h+IO ... ONgnJfn9 (4.3) 

where i varies between 1 and it and i+ 1- 1 d n, then it corresponds to coupling 
pf#,O ,...,O’@ . . . @ pf,+/.O . ...* 0) t ogether; in particular, if i = 1 and I = n, we have our 
Kronecker (interior) product VM1*‘*....‘)@ ... @ V(““n,o,...,o). Again, according to the 
references just quoted, we have a set of Casimir operators of Z-fold coupling which 
uniquely determine the spectral decomposition of this Z-fold Kronecker product. 
Note that this assertion is true because the various coupling schemes are stepwise 
multiplicity free due to Weyl’s formula (4.1). 

It is not hard to compute these Casimir operators; however, for each coupling 
scheme we have to use a different set of infinitesimal operators of the right action 
GL(ZV, V). It is much easier to use the theory of dual pairs to achieve the same goal. 
Indeed, by Theorem 3, Section 56 of [lo] (see also [ 123) the dual action to 
the GL(N, %)-action (4.2) is just the left action of L of GL(n, $7) on 91”I(gflxN) 
restricted to the subgroup of GL(n, Q?) which consists of elements of the form 

where Zk denote the identity matrix of order k. Theorem 3, Section 56 of [lo] 
shows that the eigenvectors of these left Casimir operators are exactly the same as 
the right Casimir operators described above. But the Casimir operators of the sub- 
groups of the form (4.4) are easy to compute. Indeed, let us fix i and I and let 
Mz M(i, I) denote the matrix with entries L,,, 1 <r, sdi+l- 1, where the L,, are 

581/80/2-14 
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defined by Eq. (3.3); then the Casimir operators corresponding to this subgroup 
action are given by 

tr(MPL O<p<l, (4.5) 

where tr denotes the trace of a matrix. 
Now suppose Vcrn) occurs in H’“’ with multiplicity p and let p,cmj,x> be a polyno- 

mial basis element of I”“‘. Then, as discussed in Section 3, there exist p linearly 
independent intertwining operators P,(L,), . . . . P,(L,), belonging to the universal 
enveloping algebra %! which send P,(~),~> into p linearly independent vectors of 
H(“‘). We can now apply the Casimir operators (4.5) to diagonalize the vector space 
spanned by these p vectors and thus obtain ,u orthogonal vectors in HcM’ which 
represent the same state I(m), X). The fact that the Casimir operators (4.5) can be 
simultaneously diagonalized stems from the fact that they form a maximal set of 
commuting operators (see, e.g., [ 11, Eq. (34), p. 2831) which are also Hermitian 
(this follows immediately from the fact that L$ = L,,). In theory, one must make use 
of Casimir operators of all orders, but in practice the quadratic Casimir operators 
will generally suffice to break the multiplicity. Actually if we use the coupling 
scheme ( . ..(((l. 2), 3), 4)..., n), then P~(~),~,~) is the Gelfand-zetlin basis element 
for the left action, and hence we can use, for example, Theorem 5, Section 68 of 
[lo] with the right action replaced by the left action. Then the Clebsch-Gordan 
coefficients are just the overlap between the tensor product basis and the 
Gelfand-petlin bases of the left action. For the Racah coefficients we must also use 
other coupling schemes. One extreme would be a completely symmetric (or 
antisymmetric) scheme whose states would be labelled by representations of 
the symmetric group. We suspect that this scheme will lead to the well-known 
relationship between representations of the symmetric group and that of the general 
linear group. 

To illustrate our procedure we show how to connect our results with previously 
known results for SU(2). Once this connection is made, we can proceed with n-fold 
and not just 2- and 3-fold tensor products. 

5. ~-FOLD TENSOR PRODUCT REPRESENTATIONS OF W(2); 
CLEBSCH-GORDAN AND RACAH COEFFICIENTS 

Angular momentum operators associated with SU(2), J,, J,, J3 satisfying 
[JI, J,] = i&, Jk are usually rewritten to get raising and lowering operators with 
commutation relations 

CJx, J+l= +J,, CJ,, J-l=2J3, (5.1) 

where J, = J1 f iJz. The state vectors lj, m) are defined so that 

J~Ij,~>=~lj,m),J,lj,~>=~~jfm)(j_+m+l)lj,m~1>. 
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The (quadratic) Casimir operator is 

so that J*\j, m) =j(j+ 1) lj, m), j=O, I, 1, i, etc. Consider two angular momen- 
tum states 1 j,, m,) and 1 jZ, m2), then the Clebsh-Gordan coefficients CJz,$,m2 E 
(j, m, j, , j, 1 j,, m,, jz, ml) are defined by the equation 

ljlTm,> lj2,m2>=C (i,m,jl,j21j,,m,,j2,m2) lj,m,jl,j2), 
j, m 

where (j, m, j,, j,) represents the coupled states. If we couple three states we get 

IhmJ lj,,m2>lj,,m,>=CC(12)Ijl,,ml,,j,,jz) lj3,m3) 
12 

with inverse 

A Racah coefficient can then be defined as 

R’j$$z - (j,m,j,2,j,j2j31jm,j23jlj2j3) 

- 1 cccc; 

i.e., normally Racah coefficients are sums of products of four Clebsch-Gordan 
coefficients. It can be shown that they are independent of m but depend on j. This 
procedure clearly can be generalized to couplings involving more than three 
angular momentum states. 

A concrete realization of the Hilbert space generated by the state vectors (j, m) 
can be given by setting 

V= {f: %?2x2 + ~~(fpolynomial,f(bz)=b~~b~$j(z)}, 

where z = (::: :g) belongs to %F2 ’ 2, and b = ($: &) belongs to the lower triangular 
subgroup B of GL(2, U). The inner product on Vj is given by Eq. (2.1). The right 
action of GL(2, V) on Vj is defined by [R(g) f](z) = f(zg). A basis for the 
infinitesimal action of W(2) on V is given by 
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a a 
J+ =z1i 5;;;+zz1 G 

J- = z12 -$ + z22 Y& 
11 21 

z,l -$+z,, &z~~&-z~& 
11 21 12 22 

which reproduces the basis for the Lie algebra with commutation relations given by 
Eq. (5.1). Polynomial basis states are given by P,~,,,>(z) = z~;~~z~;-~ (zip2 with 
m=k-:(~~+~2)and2j=~,-~2.Thusforanyfixedj,m,thereisasetofk,~,,CL2 
that gives the state lj, m). This ambiguity reflects the fact that many inequivalent 
representations of GL(2, %?), when restricted to SU(2), give the same irreducible 
representation of SU(2). The simplest choice which gives a unique j, m is to choose 
pL2 = 0 and set ,u, = M. Then the actual correspondence becomes m = k - M/2 and 
2j= A4 so that a normalized state vector, which we shall denote by the same symbol 
1 j, m ), is given by 

Ii m> = 
zJ,~“zJ,;” 

J(j+m)! (j-m)!’ 

With this choice the angular momentum operators become 

J, =-71, &, 
I2 

J- =z,&, 
11 

We now consider an n-fold tensor product 

P 0 . . . 0 pzjp+f) 

= {f:$p2 -W/f polynomial andf(dz)=drl...dFf(z)} 

for all dE D,, the diagonal subgroup of GL(n, U), and all ZE 59”’ 2. The relation- 
ships between the M’s and the Js are given by Mi = 2ji, 1 < i 6 n. 

Define a right action (resp. left action) of GL(2,GR) (resp. (GL(n, %)) on BIMi by 
the equation 

[Ng)fl(z)=f(zg), gE GW, U) and CW)flb) =fW’z), hi Wn, W. 

Then obviously [L(h), R(g)] = 0, and the infinitesimal action of GL(n, U) is given 
by 

L,= i z$. 
I=1 /I 
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The Casimir operator of first order for this left action is known as the number 
operator ri = Cy=, L,,. If we apply A to a tensor basis element of Hc”), we obtain 

Thus ri is the scalar operator 2j, + . . . + 2j,. Now we want to map a state lj, m) 
into vj’@ ... @ Vjn. (Remember that this state is represented by the polynomial 
function plj,,>(z) = z~;;“~z:;-~ ]z[~*.) Then it follows that rilj, m) =pl +pl. So we 
get the condition ~1~ + p2 = 2j, + ... + 2j,,. Also, 2j= CL, - pLz, so these two condi- 
tions fix p1 and p2; i.e., the relations p, + pL2 = 2j, + . . . + 2j, and pL1 - p2 = 2j imply 
that pL1=(jl+ ... +j,)+jand p2=(j,+ ... +j,)-j. Now we also have 

k=m+t(pL1+pZ)=m+(j,+ ... +j,). 

Therefore, for fixed j, , . . . . j,, and j, m, the values of fir, p2, and k are uniquely deter- 
mined. So the procedure is to map a state lj, m) into HcM) by using products of 
left operators, which are intertwining operators for the right action, and thus do 
not change the I j, m) transformation properties. Once these elements are in HtM), 
we have a state vector 1 j, m; j, . . . j,,q ), where q is a multiplicity label. Then 
0, m; il -~-jnqlj19mI) . . , j,, m, ) will give Clebsch-Gordan coefficients, while 
0, m; j, ...jn9rlj,wj, . . 1 j,, r’) give Racah coefficients (q’ is another multiplicity 
label). 

6. EXAMPLES 

We have written programs using SMP that allow us to carry out our procedure 
for computing Clebsch-Gordan and Racah coefficients of n-fold tensor products of 
irreducible representations of GL(N, q) for large n and N. In this section we give 
two examples to illustrate this procedure. The first example deals with a 4-fold 
tensor product of representations of SU(2) and the second deals with a 3-fold 
tensor product of representations of GL(3, %‘). Conforming to the notation of 
Section 5, we consider the tensor product of representations of SU(2) which are 
labelled by j, = 1, j2 = 1, j, = 1, j, = $, respectively. We immediately have the 
spectral decomposition 

(t)o(l)o(l)o(3,=(4)03(3)05(2)05(1)02(0), (6.1) 

where in Eq. (6.1) the coeflicients of the signatures denote the multiplicity of the 
irreducible representation occurring in the decomposition. The corresponding 
formula at the level of GL(2, %?) is 

(1,0)~(2,0)~(2,0)~(3,0)=(8,0)03(7, 1)05(6,2)@5(5,3)@2(4,4) (6.2) 



464 KLINK AND TON-THAT 

which can be obtained by repeatedly applying Formula (4.1) and by using, for 
example, the coupling scheme (( (1,2), 3), 4) 

CC(l, O)O (2,O)l O(2, O)lO (3,O) = 

(8,0)0(7, 1)0(6,2)0(5,3) 

0(7,1)0(6,2)0(5,3)0(4,4) - 
em 

O(7, 1)0(6,2)0(5,3)0(4,4) - 

0(6,2)0(5,3). (6.3) 

Let us concentrate on the representation of signature (1) which occurs with multi- 
plicity 5. Then it follows from Eq. (6.3) and the scheme described in Section 4 
that there exist live linearly independent intertwining operators, for example, 
L21L32L42Lily L21L:1Li2L41y L:,Li2L42L&y L&L32L31Li2L419 and L&L&L?29 
that send the GL(2, %)-module V@v3) into the GL(2, W)-module H(1.2,2,3)(%4x2). 
Here L, is given by L,j = CT= 1 z,,(a/az,,), 1 6 i, j< 4. Recall that we have the left 
actions of GL(I, +Z), 1 ,< 16 4, on H(‘,2*2*3) given by Eq. (4.4). It is well known (see, 
e.g., [lo, Section 591) that if a representation of GL(I, U) has signature (m,, . . . . m,) 
then its quadratic Casimir operator has eigenvalues 

(6.4) 

Now if we use the coupling scheme ((( 1,2), 3) 4), then we have the chain of sub- 
groups GL( 1, W) c GL(2, %?) c GL(3, %?) c GL(4, %?) acting on H(‘,2,2*3) to the left. 
According to Theorem 3, Section 56 of [12] and Eq. (6.3), the right GL(2, %)- 
modules with signature (5, 3) correspond to the left GL(4, %)-modules with 
signature (5, 3,0,0) in the final coupling (((1,2), 3), 4). In the intermediate 
coupling ((1,2), 3) the GL(2, %)-modules with signature (3,0), (4, l), and (5,0), 
respectively, correspond to the left GL(3, W)-modules with signature (3,0,0), 
(4, 1, 0), and (5,0,0), respectively. In the intermediate coupling (1,2) the GL(2, U)- 
modules with signature (2, 1) and (3,O) correspond to the left GL(2, W))-modules 
with signature (2, 1) and (3,0), respectively. Thus, according to Eq. (6.4) the left 
quadratic Casimir operators C,, and C,23 corresponding to the intermediate 
couplings (1, 2) and (( 1, 2), 3) have eigenvalues 6, 12, and 19, 25, 35, respectively. 
Since (5, 3) occurs with multiplicity 5, we can see that these two quadratic Casimir 
operators C12, and C,,, suffice to break this multiplicity and diagonalize the com- 
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ponent with signature (5,3) in H (1,2,2,3). Now if we use the coupling ((1, 2), (3, 4)), 
then we have the spectral decomposition 

(f-$0)0(7, 1)0(6,2)0(5,3) 
v 

C(1, 0) 0 (2,O)lO co, 0) 0 (3,0)1= 
0(7,1)0(6,2)0(5,3~0(4,4~ 

(6.5) 
0(6,2)0(5,3)0(7, 1)0(6,2) 

i-e 0(6,2)0(5,3)0(5,3)0(4,4) 

which corresponds to the left action of GL(4, %Y) and its subgroup 

GL(2,%‘) 0 
0 

Again in Eq. (6.5), the right GL(2, V)-modules with signature (5, 3) correspond to 
the left GL(4, %)-modules with signature (5, 3,0,0) in the final coupling 
(( 1,2), (3,4)). In the intermediate coupling (3,4) both the left and right GL(2, %)- 
modules have signatures (5,0), (4, l), and (3, 2), respectively. According to 
Eq. (6.4) the quadratic Casimir operators Cl2 and C34 corresponding to the inter- 
mediate couplings (1, 2) and (3,4) have eigenvalues 6, 12, and 30,20, 14, respec- 
tively. Again, we can see that the quadratic Casimir operators C,, and C,,, suffice 
to break the multiplicity and diagonalize the component with signature (5,3) in 
H(1,2,2,3). Below we will exhibit matrices of Racah coefficients given by our SMP 
program. Conforming to the notation of Section 5, we set j = 1, j, = 4, j, = 1, j, = 4, 
and j, = 1, and since the Racah coefficients do not depend on the label m, we can 
take m to be the highest weight 1 which corresponds to the Gelfand label (‘,‘). For 
multiplicity labels we take 

r!, ?P, fl;“, l<i,k,1<5, 

where q’ corresponds to the coupling scheme ((( 1,2), 3), 4) and the index i is 
allowed to successively take the values of the ordered pairs (12, 35), (12,25), 
(12, 19), (6,25), (6, 19) which correspond to the eigenvalues of the Casimir 
operators Cl2 and ClZ3. Similarly, q” corresponds to the coupling scheme 
((1,2), (3,4)) and k ranges over (12,30), (12,20), (12,14), (6,20), (6, 14). And 
finally, q”’ corresponds to the coupling scheme (1, (2, (3,4))) and I ranges over 
(30,39), (14,39), (20, 39), (20,33, (14,33) which corresponds to the eigenvalue of 
the Casimir operators C,, and C,,,. So 
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(j,m,jl,j2,j3,j4,?IIj,m,jl,j2,j3,j4,~~) 
ib (&)“2 ($)“” 0 0 

bw2 

I (5)‘P 

l1 

- (;)I/., 

-($)I’2 0 0 

= ; 0 

) 
0 0 0 : - (3’12 

0 0 0 w'2 0 I f 

(j,m,jl,j2,j3,j4,r:Ij,m,jl,j2,j3,j4,~;I)) 

I 

&I -(id 1 112 (&)W +?p (5)1/2 

(&)‘P ($9”’ g -(3’/2 4 
= ($"" 

-A7 - (il)1’2 (Kr) 
10 l/2 2 l/2 

(BT) > 

0 4g,1/2 (&l/2 g 

I 

-(B-i) 5 l/2 

0 (#)‘/’ 
? 

(j!p $ 

and 

Let us now turn our attention to an example of a 3-fold tensor product of GL(3, U). 
As we shall see, in this example all the multiplicity can be broken by a single quad- 
ratic Casimir operator. We consider the tensor product of three irreducible 
representations of GL(3, %?) with signature (4,0, 0), (4,0,0), and (2,0,0), respec- 
tively. We immediately have the spectral decomposition 

(4,0,0)0 (4,O,O)O(Z O,O) 

02(7, 1,0)03(6,4,0)02(6, 3, 1)@(6,2,2) 

0 (5, 5, 0)02(5, 4, l)O (4, 4, 2). (6.6) 

Though our SMP program has completely decomposed this tensor product, we will 
show the result only for the representation with signature (7, 3,0) which occurs in 
this tensor product with multiplicity 3. First, the three linearly independent inter- 
twining operators L21 L:,, L$ L,,L3,, and L:, Lz2 send the GL(3, ‘%)-module 
V(7,3,0) into the GL(3, %)-module H(4*4,2)(w3 x 3 ). Second, if we use the coupling 
scheme ((1,2), 3), then according to Formula (6.4) the quadratic Casimir operator 
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Cl2 of the left action of GL(2, %?) has eigenvalues 56, 44, and 36 which correspond 
to the representations of GL(2, +?) which occur in the intermediate coupling (1, 2) 
and which have signatures (7, l), (6,2), and (5, 3), respectively. Finally, if we use 
the coupling schemes (1, (2, 3)) or ((1, 3), 2), then the quadratic Casimir operators 
CZ3 or C,, have eigenvalues 42, 30, and 22 which correspond to the representations 
of GL(2, %?) which occur in the intermediate coupling (2, 3) or (1, 3) and which 
have signatures (6,0), (5, l), and (4,2), respectively. As we can see either one of 
these schemes can be used to completely break the multiplicity of (7, 3,0) which 
equals the number of distinct eigenvalues of the quadratic Casimir operators CIZ, 
CZ3, or Cl3 of GL(2, V). This optimal situation also happens with all irreducible 
representations which occur in this tensor product decomposition. Conforming to 
the notation of Section 2, we set 

where q corresponds to the coupling scheme (( 1,2), 3) and the index i ranges over 
the eigenvalues 56,44, and 36 of the Casimir operator CIZ. The label q’ (resp. q”) 
corresponds to the coupling scheme (1, (2, 3)) (resp. (( 1, 3), 2)) and the index k 
(resp. I) ranges over the eigenvalues 42, 30, and 22 of CZ3 (resp. C13). Below are 
matrices of Racah coefficients ((x, X, b: 1 x, X, vi)), ((x, X, qi 1 x, X, q;“)), and 
((X,X rl;lx, x rl;l)): 

i 

3 

&2 

-(4p (.&l/2 3 (&l/2 (&l/Z 
1 (5)“’ ) 

I i 
(&2 1 

(%)1/2 ($2 ; -w > 
(&91/Z 4)1,2 i I 

[ 
3 

-(f)l,2 

(,&)1/Z (3’/2 1 (y/2 . 
(g/2 4,2 : 1 

We conclude this section by exhibiting some Clebsch-Cordan coefficients computed 
by SMP. We consider the Clebsch-Gordan coefficients of the highest weight vectors 
of the three copies of the irreducible representations with signature (8, 2,0) which 
occur in the tensor product Hc4, 4, 2). If 

denotes a general nonnormalized tensor basis element, then a consideration of the 
weights shows that a necessary condition that the Clebsch-Gordan coefficients of 
this basis element with the highest weight vector abo\;e be nonzero is that 

I, + I, + I, = 8 and k,=4, k,=4, k,=2. (6.7) 
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From Eq. (6.7) we see that the only tensor basis elements of interest are 

hi~~;;‘” hi>,“;‘;‘@ h;‘~~, 4 7 , h;4;‘~‘Oh;?4~~‘0h;~‘~;‘, 

h;4;0~ 0 hi:“b(;‘o “;:.O’;‘, (4,0,0) @ h’4,0,0’@ h’2.0.0’ 

3 4 1 h(440) (“2”) (220) ’ 
h’~0~0)~h(~0~0’~h(2;0~), 

(3) (3) (2) 
h;4,06;‘@ h;4,.‘i;‘@ h;“;;! 

2 4 2 . (6.8) 

An explicit expression of a basis element can be easily computed; for example, 

hi”:? @ hi”?; @ h;?;‘(, 
1 

corresponds to 

d*z12z~,z31z32 
in ~(4,4,*)(g3 x 3). 

Conforming to the notation of Section 3, Eq. (3.4), we set 

(m)=(8,2,0), X= , 

CM,) = (4,0,0), CM*) = (4,0,0), (M3) = GO, 01, 

X, successively takes the values given by the Gelfand labels in the ith basis elements 
in the tensor basis elements of Eq. (6.8), 1 d id 3. For q we use the coupling scheme 
(( 1,2), 3) and qj represents the jth highest weight vector (1 < j < 3) of (8, 2,0) in 
this coupling scheme. Then the Clebsch-Gordan coefficients for the six tensor states 
given in Eq. (6.8), 

are given by 

0, 0, w*; 0, (p, - (&“‘; 0, -@“‘, +$p*; 
ct,“‘, - (W2, (r&J > I/2. -(3)“2, 0, ($p; (+)“*, (;)“*, (&J”*. 

7. CONCLUSION 

We have shown how to compute Clebsch-Gordan and Racah coefficients for 
n-fold tensor products of certain representations of U(N). What is unusual about 
our method is that the coefficients are not given as a closed-form expression; rather 
they are given via a procedure for calculating each desired coefficient, by 



SYMBOLIC MANIPULATION PROGRAMS 469 

associating polynomials with basis states and then differentiating these polynomials 
in a specified way. 

The procedure for obtaining Racah or Clebsch-Gordan coefficients can be sum- 
marized by the following steps. First, given an irreducible representation 
(M, 0, . . . . 0) of U(N), the basis state 1 (M, 0, . . . . 0), X), where X is a basis label, can 
be realized by the polynomial p ,M,X) given by Eq. (2.2). An n-fold tensor product 
of representations (M, , 0, . . . . 0) @ . . . @ (M,, 0, . . . . 0) can then be realized as poly- 
nomials in n x N complex variables; the tensor space H(M1’...’ K) is defined in 
Eq. (3.1) and a basis in this space is given by products of polynomials of the form 
given in Eq. (2.2). 

We assume that the number of times a representation x occurs in H(“‘I,...*Mn) is 
known (this is the Clebsh-Gordan series problem; there are a number of ways of 
obtaining the multiplicity, see Refs. [13, 141). The problem is to find a polynomial 
realization of the state Ix, X, q), where q labels the multiplicity, for then 
Clebsch-Gordan coefficients are given by 

where ( .,.) is the differentiation inner product delined in Eq. (2.1). Thus, if the poly- 
nomial realization of Ix, X, q ) can be calculated, finding Clebsch-Gordan (and 
similarly Racah) coefficients has been reduced to differentiating polynomials, a job 
well suited for a symbolic manipulation program. 

For the U(N) groups the irreducible representations x are specified by the set of 
integers (m i , . . . . mN) and the irreducible representation spaces Vcrn) can be realized 
as polynomials over N x N complex variables, as shown in the discussion preceding 
Eq. (2.1). Such a characterization of U(N) representations is basis independent; we 
have assumed in this paper that polynomials in Vrn) corresponding to the basis 
labels X are known. How this correspondence is given is discussed in Refs. [4,6]. 
An example is the Gelfand-Zetlin basis, briefly discussed at the end of Section 2. 
For Racah coeflicients there is no basis problem, as such coefficients are basis 
independent. Then the polynomial in I’(“‘) can conveniently be chosen as the 
highest weight polynomial, rP)(b(z)). 

Assuming that I(m), X) can be realized as a polynomial in Vm), we want to map 
this polynomial into ZY”““. This is done with the help of the left action differential 
operators defined in Eq. (3.3); these operators commute with the U(N) action and 
hence do not alter the basis labels of the state I(m), X). The map from P’) to H(“‘) 
is in general not unique; the number of linearly independent elements in HcM) that 
can be mapped from a given element in I/(*) IS just the multiplicity, i.e., the number 
of times the representation (m) occurs in the n-fold tensor product. 

The elements thus mapped into HcM’ are linearly independent, but not in general 
orthogonal. A general way of obtaining elements orthogonal in the multiplicity 
label is to have the multiplicity label be the eigenvalue of some operator. In this 
paper we have chosen the Casimir operators that represent stepwise coupling 
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schemes to generate an orthogonal set of elements in HtM). It is easier to work with 
the left action Casimir operators, so the operators defined by Eq. (4.5) are used to 
find the desired orthogonal eigenvectors. 

To summarize, the symbolic manipulation program has been used to: 

(1) map the polynomials from V’“’ into H (M) by using the left action differen- 
tial operators; 

(2) compute the eigenvalues and eigenvectors of Casimir operators. This 
involves diagonalizing matrices whose size is equal to the multiplicity; 

(3) compute the norms of the polynomials P,~,~,~) and P~,~,~,>; and 
(4) compute the inner product of these two polynomials to get the 

Clebsch-Gordan coefficient, or compute the inner product of p,X,X,tlA) with p,x,x,as> 
to get the desired Racah coefficient. 

All of these four operations are simple in that they involve differentiating polyno- 
mials in a certain way; but all these operations are ideally suited for a symbolic 
manipulation program because the polynomials can be quite long and complicated, 
and it is important to keep track of each term in the polynomial. 

At present the four steps are all separate operations, carried out with the sym- 
bolic manipulation program SMP on a VAX 11/780. We are developing programs 
that will combine the four operations so that it is only necessary to type in data 
such as the irreducible representations and the choice of basis and coupling scheme, 
and the computer will then calculate the desired coefficients. The examples given at 
the end of Section 6 have all used the steps listed above. The SU(2) examples 
should be of particular interest as they involve stepwise coupling schemes not 
ordinarily available in handbooks or calculated by summing over six or more 
SU(2) Clebsch-Gordan coefficients. 

The procedure just outlined has several advantages over the usual way of com- 
puting Clebsch-Gordan and Racah coefficients. n-fold tensor products, where n is 
greater than 2, are handled in the same way as the more usual two-fold tensor 
products. Further, the basis used in the I’(“‘) space need not be related to the basis 
in the n-fold tensor product space. For example, a basis for an SU(3) representation 
in which labels come from the SO(3) subgroup may be chosen for the V’“’ space, 
while basis labels for the tensor product space could come from the U(2) subgroup 
of SiJ(3). Obtaining the states Ix, X, I?) as polynomials in HcM) involves diagonal- 
izing a matrix with integer eigenvalues, whose size is given by the multiplicity of 
the representations Finally, because we use the left Casimir operators, it is easy to 
change stepwise schemes; this is particularly important for tensor products where n 
is greater than 3. 

Thus far we have considered only representations of U(N) of the form 
(M, 0, . . . . 0) in the tensor product space; these representations are the simplest 
generalization of SU(2) representations. How to deal with arbitrary representations 
of U(N) in the tensor product space is the subject of a succeeding paper [9]. 
Basically, the idea is to write all representations (m,, . . . . mN) as tensor products 
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(m,, 0, . ..) 0) @ . . . 0 (WZN, 0, . ..) 0) along with a “Borel” condition that singles out 
the desired representation, and then use the ideas given in this paper. Such ideas 
can also be used for the SO(N) and Sp(2N) groups. 

Clebsch-Gordan and Racah coefficients can be thought of as special functions 
related to group representations. Our long-term goal is to change the study of 
special functions for the compact groups by giving procedures to a computer for 
calculating the coefficients, rather than looking for their closed-form expressions. 
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